Hybrid CNN-LSTM models for river flow prediction
نویسندگان
چکیده
Abstract River flow prediction is a challenging problem due to highly nonlinear hydrological processes and high spatio-temporal variability. Here we present hybrid network of convolutional neural (CNN) long short-term memory (LSTM) for river prediction. The hybridization enables accurate identification the spatial temporal features in precipitation. A shortcut layer used as an additional channel passing input through deep increase feature diversity. flows Hun Basin, China are predicted using trained compared with results from Soil Water Assessment Tool (SWAT) model. demonstrate learning efficiency greatly affected by its structure parameters, including number layers LSTM cell layers, step size pooling training data size. Further, can effectively solve diversity reduction network. shown have similar predictive performance SWAT but superior wet seasons ability. This study shows that has great promise variability forecasting.
منابع مشابه
Hybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملhybrid models performance assessment to predict flow of gamasyab river
awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. therefore, the present study two hybrid models, wavelet- adaptive neural fuzzy interference system (wanfis) and wavelet- artificial neural network (wann) are used for flow prediction of gamasyab river (nahavand, hamedan, iran...
متن کاملYNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction
The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...
متن کاملJoint Learning of CNN and LSTM for Image Captioning
In this paper, we describe the details of our methods for the participation in the subtask of the ImageCLEF 2016 Scalable Image Annotation task: Natural Language Caption Generation. The model we used is the combination of a procedure of encoding and a procedure of decoding, which includes a Convolutional neural network(CNN) and a Long Short-Term Memory(LSTM) based Recurrent Neural Network. We f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Science & Technology: Water Supply
سال: 2022
ISSN: ['1606-9749', '1607-0798']
DOI: https://doi.org/10.2166/ws.2022.170